Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Light emitting diodes with InAs/GaAsSb self-assembled quantum dot layer embedded in GaAs

Identifieur interne : 000963 ( Main/Repository ); précédent : 000962; suivant : 000964

Light emitting diodes with InAs/GaAsSb self-assembled quantum dot layer embedded in GaAs

Auteurs : RBID : Pascal:13-0310628

Descripteurs français

English descriptors

Abstract

Luminescence properties of metalorganic vapor phase epitaxy grown light emitting diodes (LEDs) with active InAs/GaAs quantum dot (QD) layer covered by GaAsSb strain reducing layer (SRL) were investigated at temperatures from 10 to 400 K. Results show that the use of GaAsSb SRL with up to 14% Sb strongly increases luminescence, redshifts the emission maximum up to 1.4 μm while keeping the type I transition, narrows the luminescence linewidth and keeps the separation energy between the ground and excited state as in InAs/GaAs QD LEDs without SRL. The strong ground state emission which persists up to 400 K is dominated by recombination of electrons and holes confined in QDs while the broad emission from excited states, which dominates below 250 K, involves recombination from the states located in QDs and SRL. The ground state electroluminescence shows the typical Stranski-Krastanov dot temperature properties: the thermally induced narrowing of the electroluminescence linewidth and the increased QD gap energy shrinkage with temperature. The electroluminescence intensity of the ground and excited state transitions increases with temperature (up to 80 K) due to the thermal escape of electrons from the wetting layer which reduces radiative recombination via wetting layer states. The dominant mechanism responsible for the thermal quenching of electroluminescence at elevated temperatures is the escape of electrons from QDs to the GaAs barrier.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0310628

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Light emitting diodes with InAs/GaAsSb self-assembled quantum dot layer embedded in GaAs</title>
<author>
<name sortKey="Hazdra, P" uniqKey="Hazdra P">P. Hazdra</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Microelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2</s1>
<s2>166 27 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>166 27 Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oswald, J" uniqKey="Oswald J">J. Oswald</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Physics of the AS CR, v. v. i.. Cukrovarnická 10</s1>
<s2>162 00 Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>162 00 Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hospodkova, A" uniqKey="Hospodkova A">A. Hospodkova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Physics of the AS CR, v. v. i.. Cukrovarnická 10</s1>
<s2>162 00 Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>162 00 Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hulicius, E" uniqKey="Hulicius E">E. Hulicius</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Physics of the AS CR, v. v. i.. Cukrovarnická 10</s1>
<s2>162 00 Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>162 00 Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pangrac, J" uniqKey="Pangrac J">J. Pangrac</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Physics of the AS CR, v. v. i.. Cukrovarnická 10</s1>
<s2>162 00 Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>162 00 Prague</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0310628</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0310628 INIST</idno>
<idno type="RBID">Pascal:13-0310628</idno>
<idno type="wicri:Area/Main/Corpus">000697</idno>
<idno type="wicri:Area/Main/Repository">000963</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimony</term>
<term>Electroluminescence</term>
<term>Energy gap</term>
<term>Excited state</term>
<term>Gallium Antimonides arsenides</term>
<term>Gallium arsenides</term>
<term>Ground state</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Light emitting diode</term>
<term>Line width</term>
<term>Luminescence</term>
<term>MOVPE method</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Optical properties</term>
<term>Optoelectronic device</term>
<term>Quantum dot</term>
<term>Quenching</term>
<term>Radiative recombination</term>
<term>Redshift</term>
<term>Shrinkage</term>
<term>Spectral line shift</term>
<term>Strained layer</term>
<term>Stranski-Krastanov growth method</term>
<term>Thin film</term>
<term>Transition temperature</term>
<term>VPE</term>
<term>Wettability</term>
<term>Wetting</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Diode électroluminescente</term>
<term>Dispositif optoélectronique</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Synthèse nanomatériau</term>
<term>Luminescence</term>
<term>Propriété optique</term>
<term>Epitaxie phase vapeur</term>
<term>Méthode MOVPE</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Couche mince</term>
<term>Couche contrainte</term>
<term>Déplacement raie</term>
<term>Arséniure d'indium</term>
<term>Gallium Arsénioantimoniure</term>
<term>Arséniure de gallium</term>
<term>Antimoine</term>
<term>Déplacement vers le rouge</term>
<term>Largeur raie</term>
<term>Etat fondamental</term>
<term>Etat excité</term>
<term>Electroluminescence</term>
<term>Méthode croissance Stranski-Krastanov</term>
<term>Bande interdite</term>
<term>Retrait</term>
<term>Température transition</term>
<term>Mouillage</term>
<term>Mouillabilité</term>
<term>Recombinaison radiative</term>
<term>Trempe</term>
<term>InAs</term>
<term>GaAsSb</term>
<term>GaAs</term>
<term>8560J</term>
<term>8116</term>
<term>7867</term>
<term>8107T</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Antimoine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Luminescence properties of metalorganic vapor phase epitaxy grown light emitting diodes (LEDs) with active InAs/GaAs quantum dot (QD) layer covered by GaAsSb strain reducing layer (SRL) were investigated at temperatures from 10 to 400 K. Results show that the use of GaAsSb SRL with up to 14% Sb strongly increases luminescence, redshifts the emission maximum up to 1.4 μm while keeping the type I transition, narrows the luminescence linewidth and keeps the separation energy between the ground and excited state as in InAs/GaAs QD LEDs without SRL. The strong ground state emission which persists up to 400 K is dominated by recombination of electrons and holes confined in QDs while the broad emission from excited states, which dominates below 250 K, involves recombination from the states located in QDs and SRL. The ground state electroluminescence shows the typical Stranski-Krastanov dot temperature properties: the thermally induced narrowing of the electroluminescence linewidth and the increased QD gap energy shrinkage with temperature. The electroluminescence intensity of the ground and excited state transitions increases with temperature (up to 80 K) due to the thermal escape of electrons from the wetting layer which reduces radiative recombination via wetting layer states. The dominant mechanism responsible for the thermal quenching of electroluminescence at elevated temperatures is the escape of electrons from QDs to the GaAs barrier.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>543</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Light emitting diodes with InAs/GaAsSb self-assembled quantum dot layer embedded in GaAs</s1>
</fA08>
<fA09 i1="01" i2="1" l="FRE">
<s1>International Conference NanoSEA (NANOstructures SElf Assembly) 2012</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HAZDRA (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OSWALD (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOSPODKOVA (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HULICIUS (E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PANGRAC (J.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BERBEZIER (Isabelle)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DE CRESCENZI (Maurizio)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Microelectronics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2</s1>
<s2>166 27 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Physics of the AS CR, v. v. i.. Cukrovarnická 10</s1>
<s2>162 00 Prague</s2>
<s3>CZE</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>IM2NP-CNRS</s1>
<s2>Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Roma "Tor Vergata"</s1>
<s2>Roma</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>83-87</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000501544010190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0310628</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Luminescence properties of metalorganic vapor phase epitaxy grown light emitting diodes (LEDs) with active InAs/GaAs quantum dot (QD) layer covered by GaAsSb strain reducing layer (SRL) were investigated at temperatures from 10 to 400 K. Results show that the use of GaAsSb SRL with up to 14% Sb strongly increases luminescence, redshifts the emission maximum up to 1.4 μm while keeping the type I transition, narrows the luminescence linewidth and keeps the separation energy between the ground and excited state as in InAs/GaAs QD LEDs without SRL. The strong ground state emission which persists up to 400 K is dominated by recombination of electrons and holes confined in QDs while the broad emission from excited states, which dominates below 250 K, involves recombination from the states located in QDs and SRL. The ground state electroluminescence shows the typical Stranski-Krastanov dot temperature properties: the thermally induced narrowing of the electroluminescence linewidth and the increased QD gap energy shrinkage with temperature. The electroluminescence intensity of the ground and excited state transitions increases with temperature (up to 80 K) due to the thermal escape of electrons from the wetting layer which reduces radiative recombination via wetting layer states. The dominant mechanism responsible for the thermal quenching of electroluminescence at elevated temperatures is the escape of electrons from QDs to the GaAs barrier.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Light emitting diode</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Diodo electroluminescente</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Luminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Luminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Luminiscencia</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>VPE</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Point quantique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Quantum dot</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Punto cuántico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Couche contrainte</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Strained layer</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Capa forzada</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Déplacement raie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Spectral line shift</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Desplazamiento raya espectral</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Gallium Arsénioantimoniure</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Gallium Antimonides arsenides</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Galio Antimoniuro arseniuro</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Antimoine</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Antimony</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Antimonio</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Déplacement vers le rouge</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Redshift</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Desplazamiento hacia el rojo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Largeur raie</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Line width</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Anchura raya espectral</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Etat fondamental</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Ground state</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Estado fundamental</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Etat excité</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Excited state</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Estado excitado</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Electroluminescence</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Electroluminescence</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Electroluminiscencia</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Méthode croissance Stranski-Krastanov</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Stranski-Krastanov growth method</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Método crecimiento Stranski-Krastanov</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Retrait</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Shrinkage</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Retiro</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Température transition</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Transition temperature</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Temperatura transición</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Mouillage</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Wetting</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Remojo</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Mouillabilité</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Wettability</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Remojabilidad</s0>
<s5>39</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Recombinaison radiative</s0>
<s5>40</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Radiative recombination</s0>
<s5>40</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Recombinación radiativa</s0>
<s5>40</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Trempe</s0>
<s5>41</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Quenching</s0>
<s5>41</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Temple</s0>
<s5>41</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>GaAsSb</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>8560J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>294</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference NanoSEA (NANOstructures SElf Assembly) 2012</s1>
<s2>4</s2>
<s3>Santa Margherita di Pula, Sardinia ITA</s3>
<s4>2012-06-25</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000963 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000963 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0310628
   |texte=   Light emitting diodes with InAs/GaAsSb self-assembled quantum dot layer embedded in GaAs
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024